Agenda:

- Ch. 4 Notes ightarrow
- **Class time for questions and** • stuff (Mission Blue **Documentary?)**

Bell Work

Unequal Heating of Earth

- This unequal heating is due to 3 factors:
 - 1. The variation in angle at which the Sun's rays strike
 - 2. The amount of surface area over which the Sun's rays are distributed

Sun's rays travel a shorter distance to reach the tropics so not as much heat is lost traveling through the atmosphere

Tropical areas receive more solar energy per m² because the perpendicular angel covers less surface area than oblique angels

Unequal Heating of Earth

- 3. Some areas of the Earth reflect more solar energy than others
- <u>albedo</u> the % of
 incoming sunlight that is
 reflected from a surface
- A white surface has higher albedo than a black surface, so it tends to stay cooler

1. Density

- Less dense air rises, and dense air sinks
- At constant atmospheric pressure, warm air has a lower density than cold air
- Warm air rises and cold air sinks

Density of Gases Variation of Temperature

Cold Temperature

Density of gases depends on temperature, the higher the temperature, the lower the density, therefore warm gases rise.

Case 1: D = 0.00130g/cc Case 2: D = 0.00065g/cc

Warm Temperature

C. Ophardt, c. 2003

2. <u>Water vapor capacity</u>

- Warm air has a higher
 capacity for water vapor than
 cold air
- Maximum amount of water
 that can be in the air at a
 given temperature is called
 the saturation point

3. Adiabatic cooling or heating

- <u>Adiabatic cooling</u> as air *rises,* the pressure on it *decreases* which allows the air to *expand* in volume, which *lowers* air temperature
- Adiabatic heating as air sinks, the pressure on it increases which allows the air to decrease in volume, which raises air temperature

© 1998 Wadsworth Publishing Company/ITP

4. Latent heat release

- The reverse process of evaporation!
- When water vapor in the atmosphere condenses into liquid water and energy is released
 - Important because wherever condensation occurs, the air becomes warmer and will rise

• <u>Atmospheric convection currents</u> are global patterns of air movement that are initiated by the unequal heating of Earth.

- *In the tropics,* the warming of humid air at the surface *decreases its density* and it begins to rise
- As it rises it experiences *adiabatic cooling* which causes the air to reach its saturation point leading to condensation, cloud formation, and precipitation
- Condensation also causes latent heat release with which offsets some adiabatic cooling and makes the air expand further and rise more rapidly through the troposphere
 - These processes cause air to rise continuously from Earth's surface near the equator, forming a river of air flowing upward into the troposphere

- *Air near the top of the troposphere* is chilled by *adiabatic cooling* and contains relatively little water vapor
- As warmer air rises from below, this cold, dry air is *displaced horizontally* both north and south of the equator
- Displaced air eventually begins to sink at *approximately 30*° *N and S*
- As it sinks if it experiences higher *atmospheric pressures* and the reduction in volume causes *adiabatic heating* so it is hot and dry when it reaches the earth

This air moves along the Earth's surface back towards the equator to *replace the rising air*, completing the cycle

Explains why regions at 30°N and S are typically hot, dry deserts

• The convection currents that cycle between the equator and 30° N and S in this way are called <u>Hadley cells</u>

- The area of earth that receives the most intense sunlight, where the ascending branches of the two Hadley cells converge is called the <u>intertropical</u>
 <u>convergence zone (ITCZ)</u>
- Typified by intense thunderstorm activity
- *Latitude of the ITCZ moves north and south* of the equator
- Due to the *tilted axis of Earth's rotation,* the area receiving the most sunlight shifts between 23.5° N and 23.5° S
 - Explains the seasonal patterns of precipitation in the tropics

- The <u>polar cells</u> are convection currents that are formed by air that *rises at 60° N and S and sinks at the poles (90° N and S)*
- At 60° N and S *rising air cools* and *water vapor condenses* into precipitation
- *Air dries as it moves towards the poles,* where it sinks back to Earth's surface.

At the poles the air moves across the surface back to 60° N and S, completing the cycle

- Between Hadley and polar cells are <u>ferrel</u> <u>cells</u>
- Air circulation *does not form distinct convection cells,* but is driven by the air movement in the Hadley and polar cells
- At the Earth's surface, *warmer air from Hadley cells* moves toward the poles from 30° N and S and *cooler air from the polar cells* moves towards the equator from 60° N and S
 - Allows wide range of warm and cold air currents to circulate between 30° and 60°
 - Pattern of air circulation is responsible for location of rainforests, deserts, and grasslands

The *rotation* of the Earth also influences air flow, weather and climate!

Earth's Rotation and the Coriolis Effect

- As Earth rotates, its surface moves much faster at the equator than in midlatitude and polar regions.
- Imagine your-self standing still as the Earth rotates. Where would you be traveling the fastest over 24 hours (one full rotation of the Earth)?

Earth's Rotation and the Coriolis Effect

- The faster rotation speeds closer to the equator cause a deflection of objects that are moving directly north or south.
- What direction does the Earth rotate? EAST FERGODSAKES!!!
- Imagine you throw a ball from the north pole, south toward the equator, which direction will it be deflected?

WEST FERGODSAKES!!!

The deflection of an object's path due to Earth's rotation is called the <u>Coriolos effect</u>