
BASIS header:

Density

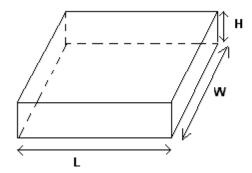
Density describes how much space) of a substance	(or mass) occupies the	(or
Matter is anything that has	_and takes up	
Two objects can be the	but have	

Can a gas have a density?

Changing the shape of an object	change its density because it does not
alter the	occupied by the volume of the object

Exception!

Squishing a loaf of bread changes the density of the bread!


Slicing a loaf of bread does not change the density of the bread!

Why?

_.

Density is the measure of the object.	of an
The metric base unit for density is	() for
solids and () for liquids.	
In order to calculate the density of an object, we need to know the and the	·
We can measure the mass of a solid or liquid using a or balance.	
We can measure the volume of a liquid by using a,,	,
or	
How do we measure the volume of a solid without water displacement???	

The formula for th	e volume of a solid is		
Volume =	X	X	

The units for volume when you are calculating density are:

- Solids: _____
- Liquids: _____

You have to convert metric measures to cm and mL ______ calculating density

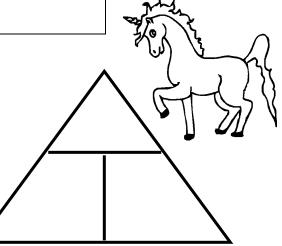
_____ cm³ = _____mL

PRACTICE! CALCULATE THE VOLUME OF THE FOLLOWING SOLID OBJECTS:

Length (cm)	Width (cm)	Height (cm)	Volume (cm ³)
6 cm	3 cm	1 cm	
10 cm	5 cm	2 cm	
5 cm	2 cm	8 cm	
2.5 cm	3.5 cm	1.5 cm	
1.5 cm	10 cm	2.5 cm	
4.3 cm	3.7 cm	1.8 cm	
8.5 cm	8.8 cm	8.2 cm	
9.7 cm	13.3 cm	2.9 cm	

Round your answer to the nearest 1000th place (0.001)!!!

The formula for density is:


Density = ______÷ _____

Use the magical triangle of power, unicorns, and boogers!!!

Density =

Mass =

Volume =

If you put a solid object in a liquid and the solid object is ______dense than the liquid than the object will ______. If you put a solid object in a liquid and the solid object is ______dense than the liquid than the object will ______. Density = 1.0 Density = 1.0

The density of pure water is ______. Which of the following materials will float or sink on pure water?

Material	Density	Float or Sink
Air	0.001 g/cm ³	
Corn oil		
	0.93 g/mL	
Glycerin		
	1.26 g/mL	
Corn Syrup		
	1.38 g/mL	
Wood	0.85 g/cm ³	
Steel	7.81 g/cm ³	
Rubber	1.34 g/cm ³	
lce	0.92 g/cm ³	
Water		
	1.00 g/mL	

Cym	Material	Density	
Top layer —	Air	0.001 g/cm ³	1
	Corn oil	0.93 g/mL	
	Glycerin	1.26 g/mL	
	Corn Syrup	1.38 g/mL	
	Wood	0.85 g/cm ³	
	Steel	7.81 g/cm ³	
	Rubber	1.34 g/cm ³	
Bottom	lce	0.92 g/cm ³	
layer	Water	1.00 g/mL	

Assuming that the materials don't mix, show how the materials would "stack up" in a graduated cylinder.

The density of salt water is ______. Which of the following materials will float or sink on salt water?

Material	Density	Float or Sink
Air	0.001 g/cm ³	
Corn oil		
	0.93 g/mL	
Glycerin		
	1.26 g/mL	
Corn Syrup		
	1.38 g/mL	
Wood	0.85 g/cm ³	
Steel	7.81 g/cm ³	
Rubber	1.34 g/cm ³	
lce	0.92 g/cm ³	
Water		
	1.00 g/mL	

DENSITY CONCEPT QUESTIONS

- A gold-colored ring has a mass of 18.9 grams and a volume of 1.12 cm³. Is the ring pure gold? (The density of gold is 19.3 g/cm³)
- 2. Why does an air bubble rise to the surface of a glass of soda?
- 3. Why do companies make airplanes out of aluminum instead of cast iron? Why do companies make weightlifting equipment out of cast iron instead of aluminum?
- 4. Why does changing the shape of an object not change its density?
- 5. Describe the "loaf of bread" example we discussed in class. Why does slicing the bread not change the density whereas squishing the loaf of bread does change the density?