Agenda

- New seats
- NO BELL WORK CHECK OR FRIDAY QUIZ! (you're welcome xoxo)
- Return exams
- Density notes

Bell Work

1. Define the following terms.

Pour the layers <u>slowly and in order</u>! They might mix but if you let the cup sit out for a couple hours they will separate because they have <u>different densities</u>! Kewl!!!

- Density describes how much <u>matter</u> (or mass) occupies the <u>volume</u> (or space) of a substance
- Matter is anything that has <u>mass</u> and takes up <u>space</u>.
- Two objects can be the <u>same</u> <u>size</u> but have <u>different densities</u>.
- Can a gas have a density?
 - Yes!!! The matter in a gas is very spread out so it will have a small mass and a large volume!

- Changing the shape of an object <u>does not</u> change its density because it does not alter the <u>amount of matter</u> occupied by the volume of the object
- Exception!
 - Squishing a loaf of bread changes the density of the bread!
 - Slicing a loaf of bread does not change the density of the bread!
 - Why?

- Density is the measure of the mass divided by the volume of an object.
- The metric base unit for density is grams per centimeters cubed (g/cm³) for solids and grams per milliliter (g/mL) for liquids.
- In order to calculate the density of an object, we need to know the <u>mass</u> and the <u>volume</u>.

DAWN

Density of a diamond = **3.53 g/cm³**

- We can measure the mass of a solid or liquid using a <u>scale</u> or balance.
- We can measure the volume of a liquid by using a <u>beaker</u>, <u>graduated cylinder</u>, or <u>Erlenmeyer flask</u>.
- How do we measure the volume of a solid without water displacement???
 - A formula!!

The formula for the volume of a solid is :

Volume = length x width x height

Volume = L*W*H

- The units for volume when you are calculating density are:
 - Solids: <u>cm³</u>
 - Liquids: <u>mL</u>
- You have to convert metric measures to cm and mL <u>before</u> calculating density
- <u>**1**</u> cm³ = <u>**1**</u>mL

Practice! Calculate the volume of the following solid objects:

Length (cm)	Width (cm)	Height (cm)	Volume (cm³)
6 cm	3 cm	1 cm	
10 cm	5 cm	2 cm	
5 cm	2 cm	8 cm	
2.5 cm	3.5 cm	1.5 cm	
1.5 cm	10 cm	2.5 cm	
4.3 cm	3.7 cm	1.8 cm	
8.5 cm	8.8 cm	8.2 cm	
9.7 cm	13.3 cm	2.9 cm	

Round decimal answers to the nearest 1000th place (0.001)

- The formula for density is:
 - Density = <u>Mass</u> ÷ <u>Volume</u>
- Use the magical triangle of power, unicorns, and boogers!!!

CLASS TIME!!!!!

• Work on density worksheet!

The formula for the volume of a solid is :

DON'T FORGET!!! THE METRIC UNITS FOR DENSITY ARE:

- FOR A SOLID: g/cm3
- FOR A LIQUID: g/mL

1. A rock has a volume of 15 cm3 and a mass of 45g. What is the density of the rock? Show your work.

WORK ON YOUR WORKSHEET! YOU WILL HAVE TIME TO WORK ON THIS AGAIN TOMORROW!

